INSTALLATION INSTRUCTIONS

Single Package Electric Heat Pump Rooftop Unit

IMPORTANT

ATTENTION INSTALLERS:

It is your responsibility to know this product better than your customer. This includes being able to install the product according to strict safety guidelines and instructing the customer on how to operate and maintain the equipment for the life of the product. Safety should always be the deciding factor when installing this product and using common sense plays an important role as well. Pay attention to all safety warnings and any other special notes highlighted in the manual. Improper installation of the furnace or failure to follow safety warnings could result in serious injury, death, or property damage.

These instructions are primarily intended to assist qualified individuals experienced in the proper installation of this appliance. Some local codes require licensed installation/service personnel for this type of equipment. Please read all instructions carefully before starting the installation. Return these instructions to the customer's package for future reference.

DO NOT DESTROY. PLEASE READ CAREFULLY AND KEEP IN A SAFE PLACE FOR FUTURE REFERENCE.

TABLE OF CONTENTS

IMPORTANT SAFETY INFORMATION	2
GENERAL INFORMATION	3
Equipment Check	3
Unit Location	3
Clearances to Combustible Materials	3
Air Filter Pequirements	+ 1
Condensate Drain	+ 1
Minimum Clearance Requirements	•
Packaging Removal	4
Rigging & Hoisting	4
Rooftop Mounting	5
Ground Level	5
CIRCULATING AIR SUPPLY	3
Unconditioned Spaces	7
Acoustical Ductwork	7
Downflow to Horizontal Conversion	7
ELECTRICAL WIRING	7
Pre-Electrical Checklist	7
Line Voltage	7
Grounding	/ D
Blower Speed	2
Low Voltage Connections - Thermostat	י ק
Defrost Cycle Timer	3
Defrost Control Board	3
Operational Information	9
Normal defrost operation)
Defrost Test Procedure)
STARTUP & ADJUSTMENTS 1	10
Pre-Start Check List	10
Startup-Up Procedures	10
Air Circulation.	10
Short Cycle Protection	10
Heat Pump Heating Operation for 2 or 3 Stage	10
Field Installed Electric Heat (Optional)	11
Emergency Heat	11
Defrost Mode	11
Verify Operation of Over-Temperature Limit Control	11
OPERATING SEQUENCE 1	11
Heat Pump Cooling Mode	11
Blower Mode	12
Heat Pump Heating Mode , Optional Electric Heat	12
Emergency Heat Mode	12
Unit Fails to Operate	12
	12
Routine Maintenance	12
Air Filters	12
Blower Compartment	12
Condensate Drain & Outdoor Coil	12
Electrical	13
Motor Lubrication	13
	13
REPLACEMENT PARTS	13
COMPONENT FUNCTIONS	13
FIGURES & TABLES 1	14
Figure 9. Q6SP Components	14
Physical Data	15
Table 1 Unit Weights & Conter of Grovity	15
	10

Electrical Data
Circuits / Unit Only 17
Table 3 H5HK Electrical Data - Multiple Supply
Circuits 17
Table 4, Q6SP Electrical Data - Single Supply Circuits 18
Figure 11, Ladder Diagram for Q6SP-090/120
(C/D) Series
Figure 12. Wiring Diagram for Q6SP - 090/120
(C/D) Series
Blower Performance Tables
Table 5. Q6SP Series Alternate Accessory
Blower Drives
Table 6. Blower Performance for Q6SP-090(C,D)a
Series (7.5 Ton Downflow Models Only)
Table 7. Blower Performance for Q6SP-090(C,D)a
Series (7.5 Ton Horizontal Models Only)23
Table 8. Blower Performance for Q6SP-120(C,D)a
Series (10 Ton Downflow Models Only)24
Table 9. Blower Performance for Q6SP-120(C,D)a
Series (10 Ton Horizontal Models Only)25
Cooling Mode Charging Charts
Figure 13. Charging Chart for 7 1/2 Ton Units
Figure 14. Charging Chart for 10 Ion Units
Heating Mode, Charge Verification Charts
Figure 15. Verification Chart for 7 1/2 ton units
Figure 16. Verification Chart for 10 ton units
INSTALLATION / PERFORMANCE CHECK LIST

IMPORTANT SAFETY INFORMATION

Please read all instructions before servicing this equipment. Pay attention to all safety warnings and any other special notes highlighted in the manual. Safety markings are used frequently throughout this manual to designate a degree or level of seriousness and should not be ignored. **WARNING** indicates a potentially hazardous situation that if not avoided, could result in personal injury or death. **CAUTION** indicates a potentially hazardous situation that if not avoided, may result in minor or moderate injury or property damage.

A WARNING:

ELECTRICAL SHOCK, FIRE OR EXPLOSION HAZARD

Failure to follow safety warnings exactly could result in serious injury or property damage.

Improper servicing could result in dangerous operation, serious injury, death or property damage.

- Before servicing, disconnect all electrical power to the equipment.
- When servicing controls, label all wires prior to disconnecting. Reconnect wires correctly.
- Verify proper operation after servicing.

A WARNING:

Do not place combustible material on or against the unit cabinet. Do not place combustible materials, including gasoline and any other flammable vapors and liquids, in the vicinity of the unit.

A WARNING:

PROPOSITION 65 WARNING: This product contains fiberglass wool, a product known to the state of California to cause cancer. Disturbing the insulation of this product during installation, maintenance, or repair will expose you to fiberglass wool.

- Breathing this material may cause respiratory irritations or may cause lung cancer.
- Fiberglass wool may also cause eye irritation, skin sensitization, or other allergic responses in susceptible individuals.
- Always wear goggles, disposable gloves, long sleeved shirt, and appropriate breathing protection when working near this insulation. If contact with skin occurs, wash immediately with soap and water. In case of contact with eyes, flush immediately with water for at least 15 minutes. Contact a physician if needed.

A WARNING:

The information listed below must be followed during the installation, service, and operation of this unit. Unqualified individuals should not attempt to interpret these instructions or install this equipment. Failure to follow safety recommendations could result in possible damage to the equipment, serious personal injury or death.

- Before beginning the installation, verify that the unit model is correct for the job. The unit model number is printed on the data label. This unit is **NOT** to be used for temporary heating of buildings or structures under construction.
- This equipment contains liquid and gaseous refrigerant under high pressure. Installation or servicing should only be performed by qualified trained personnel thoroughly familiar with this type equipment.
- The installer should become familiar with the units wiring diagram before making any electrical connections to the unit. See the unit wiring label or Figure 11 (page 19) & Figure 12 (page 20).

- Follow all precautions in the literature, on tags, and on labels provided with the equipment. Read and thoroughly understand the instructions provided with the equipment prior to performing the installation and operational checkout of the equipment.
- Use caution when handling this appliance or removing components. Personal injury can occur from sharp metal edges present in all sheet metal constructed equipment.

GENERAL INFORMATION

Single Package Electric Heat Pump units are designed for outdoor rooftop or ground level slab installations. The units are shipped ready for downflow duct connections and are easily converted for horizontal flow connections with an accessory kit. All models are shipped from the factory with the following:

- R-410a Refrigerant
- · Adjustable belt drive blower system
- Downflow duct connections
- 24V circuit breaker protection
- Factory wired accessory plugs for economizers and electric Heat Kits.

Unit dimensions are shown in Figure 10 (pages 15 - 16). Optional field installed 3 phase electric heater kits are available in 9, 18, 30 and 35KW capacities for Q6SP models. Use only NORDYNE heater kits listed in the technical service literature for these units. A three stage heat / two stage cool 24VAC thermostat is required when electric heat kits are installed.

Equipment Check

All units have been securely packaged at the point of shipment. After unpacking the unit, carefully inspect it for apparent and concealed damage. Claims for damage should be filed with the carrier by the consignee. Refer to page 4 for packaging removal instructions.

Unit Location

The electric unit is designed only for outdoor installations. Choosing the location of the unit should be based on minimizing the length of the supply and return ducts. Consideration should also be given to availability of electric power, service access, noise, and shade. The unit installation shall avoid areas where condensate drainage may cause problems.

Clearances to Combustible Materials

See Figure 1 (page 4) for required clearances to combustible materials. Refer to the unit data label for the model number.

△ WARNING:

Rooftop installations with vertical ducts must be provided with a 90 degree elbow installed in the supply duct to comply with UL (Underwriters Laboratories) codes for use with electric heat so the elements are not directly over a supply grille.

Figure 1. Minimum Clearances to Combustibles

The electric unit is suitable for installation on combustible flooring or class A, B, or C roofing materials. A clearance of at least 36 inches to combustibles from all sides of the unit is required. Where accessibility to combustibles clearances are greater than minimum unit clearances, accessibility clearances must take preference. Sufficient clearance for unobstructed airflow through the outdoor coil must be maintained in order to achieve rated performance. See Figure 1 for minimum recommended clearances to obstructions.

Thermostat

A 2 stage heating / cooling 24VAC heat pump thermostat is required for these units. **NOTE:** If optional electric heat is added, a 3 Stage Heat / 2 Stage Cool 24VAC electric heat pump thermostat must be used.

Air Filter Requirements

A suitable air filter must be installed in the unit or in the return air system. Refer to Specification & Electrical Data Table for recommended filter sizes. Air filter pressure drop must not exceed 0.08 inches WC. Replacement filters should be of like kind and size, rated for 500 ft per minute.

This unit is supplied with air filters. Air filter(s) must be installed ahead of the evaporator coil of this unit. All return air to this unit must pass through the filters before entering this unit.

A WARNING:

Never operate unit without a filter. A failure to follow this warning could result in a fire, personal injury, or death.

Condensate Drain

Condensate is removed from the unit through the 3/4" (19mm) PVC pipe located on the front side of the unit. Install a 3" (8cm) Min. trap between the drain line and an open vent of the same size for proper condensate removal. See Figure 2. Refer to local codes and restrictions for proper condensate disposal requirements. When connecting rigid drain line, hold any fittings with a wrench to prevent twisting. **Do not overtighten!**

Figure 2. Condensate Drain

UNIT INSTALLATION

Minimum Clearance Requirements

Units are certified as combination Heating and Cooling equipment for outdoor installation only at the minimum clearances to combustible materials shown. Clearances shown in Figure 1 are for both Downflow and Horizontal discharge.

Packaging Removal

- 1. Remove top crate brackets and wooden cap assembly from top of unit. See Figure 3 (page 5).
- 2. Remove lower crate brackets, 4 side skids, and 2 end skids from each side of unit. **DO NOT remove base rails from unit.**
- 3. Rig unit and raise up approximately 4 feet off the ground. See Rigging & Hoisting section.
- 4. Remove crate brackets securing long and short bottom boards to underside of unit. See Figure 4 (page 5). **NOTE:** Some screws are located in fork slots.
- 5. Remove long & short bottom boards from beneath unit.
- 6. Inspect unit thoroughly for shipping damage.
- 7. Carefully lower and position unit to it's permanent location.

Rigging & Hoisting

WARNING:

To avoid the risk of property damage, personal injury, or death, it is the rigger's responsibility to ensure that whatever means are used to hoist the unit are safe and adequate:

- The lifting equipment must be adequate for the load. See Table 1, (page 16) for unit weights.
- The unit must be lifted from the holes in the base rails using cables or chains. See Figure 5.
- Spreader bars (Figure 5) are required to protect the unit and ensure even loading.
- Keep the unit in an upright position at all times. The rigging must be located outside the units center of gravity. Refer to Physical Data Pages (Table 1) for center of gravity location.
- All panels must be securely in place during rigging and hoisting.

Figure 3. Side View

Figure 4. Bottom View

Figure 5. Rigging & Hoisting

Units may be installed on wood flooring or on Class A, B, or C roof covering material when used with side supply and return air ducts. (Horizontal Discharge Kit required.) Units may be installed on wood flooring or on Class A, B, or C roof covering material when used with bottom discharge and return air ducts in conjunction with a roof curb. If installing units on a combustible floor with downflow discharge, a roof curb is required.

Units may be installed on non- combustible flooring when used with bottom supply and return air ducts.

Rooftop Mounting

For rooftop installations use the appropriate accessory roof curb and follow all instructions included with it. See Figure 6 (page 6). Locate the unit according to local building codes and ordinances. The roof curb must be square and level to ensure proper condensate drainage and unit operation.

- On bottom discharge applications, supply and return air ducts must be attached to the roof curb duct supports, not the unit. Install all ductwork before setting unit to curb or frame. NOTE: In downflow applications never drill or punch holes in unit base. Leakage may occur if unit bottom pan is punctured.
- If any brand other than a NORDYNE Roof Curb is to be used the frame support must be constructed using non-combustible materials.
- Units require full perimeter support under the unit. Supports must be made of steel or suitably treated wood materials. The unit must be square and level to ensure proper condensate drainage.
- The roof must be capable of handling the weight of the unit. Reinforce the roof if required. See Table 1, (page 16) for unit weights.
- Frame must be high enough to ensure prevention of any moisture from entering the unit. Recommended height to unit base is 8" (20cm) for both Downflow and Horizontal applications.
- Secure roof curb or frame to roof using acceptable mechanical methods per local codes.

Ground Level

A WARNING:

Do not place combustible material on or against the unit cabinet. Do not place combustible materials, including gasoline and any other flammable vapors and liquids, in the vicinity of the unit.

If installing the unit at ground level, provide a concrete mounting pad separate from the building foundation. The pad must be level to ensure proper condensate disposal and strong enough to support the unit's weight. Make sure the slab is a minimum of 3" (8cm) above grade and in an area that drains well. See Figure 7 (page 6).

Ductwork should be attached directly to flanges on panels supplied in horizontal duct conversion kits. Unit Base Rails provide full perimeter support under the unit. The unit

must be square and level to ensure proper condensate drainage. Unit clearances must be in accordance with those shown in Figure 1 (page 4).

CIRCULATING AIR SUPPLY

Figure 6. Installations Roof Curb Installations

Figure 7. Concrete Pad

WARNING:

Do not allow combustion products to enter the return air ductwork or the circulating air supply. Failure to prevent the circulation of combustion products into the occupied space can create potentially hazardous conditions including carbon monoxide poisoning that could result in personal injury or death.

All return ductwork must be secured to the unit with sheet metal screws. All joints must be taped and adequately sealed. When return air is provided through the bottom of the unit, the joint between the unit and the return air plenum must be air tight.

The roof curb or framing must provide sound physical support of the unit with no gaps, cracks, or sagging between the unit and the curb or frame.

Return air and circulating air ductwork must not be connected to any other heat producing device such as a fireplace insert, stove, etc. This may result in fire, explosion, property damage, personal injury, or death from carbon monoxide poisoning.

- This unit is designed only for use with a supply and return duct. Any exterior ducts, joints, or openings in the building roof or walls must be weatherized with conventional flashing and sealing compounds.
- Air ducts should be installed in accordance with all applicable local codes and the standards of the National Fire Protection Association "Standard for Installation of Air Conditioning Systems" (NFPA 90A).
- Design the ductwork according to methods described by the Air Conditioning Contractors of America (ACCA) Manual Q.
- It is recommended that the outlet duct be equipped with a removable access panel. This opening should be accessible when the unit is installed in service and shall be of a size such that the smoke or reflected light may be observed inside the casing to indicate the presence of leaks in the heat exchanger. The cover for the opening shall be attached in such a manner as to prevent leaks.
- If outside air is used as return air for ventilation or to improve indoor air quality, the system must be designed so that the return air to the unit is not less than 50° F (10° C) during heating operation. If a combination of indoor and outdoor air is used, the ducts and damper system must be designed so that the return air supply to the unit is equal to the return air supply under normal, indoor return air applications.

Unconditioned Spaces

All ductwork passing through unconditioned space must be properly insulated to prevent condensation and minimize duct losses. Use insulation with an outer vapor barrier. Refer to local codes for insulation material requirements.

Acoustical Ductwork

Certain installations may require acoustical lining inside the supply ductwork. Acoustical insulation must be in accordance with the current revision of the Sheet Metal and Air Conditioning Contractors National Association (SMACNA) application standard for duct liners. Duct lining must be UL classified batts or blankets with a fire hazard classification of FHC-25/50 or less.

Fiber ductwork may be used in place of internal duct liners if the fiber ductwork is in accordance with the current revision of the SMACNA construction standard on fibrous glass ducts.

Fibrous ductwork and internal acoustical lining must be NFPA Class 1 air ducts when tested per UL Standard 181 for Class 1 ducts.

Downflow to Horizontal Conversion

The unit is shipped ready for downflow duct connections. If horizontal ducts are required, the unit must be converted according to the directions in the conversion kit for both the supply and return ducts.

ELECTRICAL WIRING

WARNING:

To avoid the risk of electrical shock, personal injury, or death, disconnect all electrical power to the unit before performing any maintenance or service. The unit may have more than one electrical power supply.

- Electrical connections must be in compliance with all applicable local codes and ordinances, and with the current revision of the National Electric Code (ANSI/ NFPA 70).
- For Canadian installations the electrical connections and grounding shall comply with the current Canadian Electrical Code (CSA C22.1 and/or local codes).

Pre-Electrical Checklist

- $\sqrt{}$ Verify that the voltage, frequency, and phase of the supply source match the specifications on the unit rating plate.
- √ Verify that the service provided by the utility is sufficient to handle the additional load imposed by this equipment.
 See Table 2, Table 3, (page 17), and Table 4, (page 18) or the unit wiring label for proper high and low voltage wiring.
- \sqrt{Verify} factory wiring is in accordance with the unit wiring diagram. Inspect for loose connections.
- $\sqrt{}$ For 3 phase units always check the phase balance as shown on page 8

Line Voltage

It is recommended that the line voltage to the unit be supplied from a dedicated branch circuit containing the correct fuse or circuit breaker for the unit.

IMPORTANT NOTE:

An electrical disconnect must be installed readily accessible from and located within sight of the unit. (See unit data label for proper incoming field wiring). Any other wiring methods must be acceptable to authority having jurisdiction.

The power supply for the unit must be in accordance with the unit wiring diagram, and the unit rating plate. Connect the line-voltage leads to the corresponding terminals on the terminal block inside the element access compartment. Refer to Figure 10 (page 15) for compartment location. Use only copper wire for the line voltage power supply to this unit. If using conduit to bring in supply wiring to the unit, use only UL listed or recognized conduit and conduit connections.

All Q6SP model units are shipped factory ready for Single Circuit Electrical Supply connections. See Table 2, Table 3, and Table 4 or the unit rating label for proper high voltage wiring requirements. For Dual Electrical Supply connections see unit rating plate or heater kit installation instructions for proper high voltage wiring requirements. Use NORDYNE P/N-917468 Pole Dual Circuit Adaptor for converting to dual supply connections.

△ CAUTION:

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.

Units are shipped from the factory wired for 230 or 460 volt operation. On 208 - 230V units being placed into 208 volt operation, remove the lead from the transformer terminal marked 240V and connect it to the terminal marked 208V.

Overcurrent protection must be provided at the branch circuit distribution panel and sized as shown on the unit rating label and according to the National Electric Code and applicable local codes.

- See the unit rating plate for maximum circuit ampacity and maximum overcurrent protection limits.
- 1-3/8" conduit openings are supplied for high voltage field wiring entrance. If smaller openings are required use suitable (field supplied) reducers to meet specific conduit size requirements.

Grounding

A WARNING:

The unit cabinet must have an uninterrupted or unbroken electrical ground to minimize personal injury if an electrical fault should occur. Do not use gas piping as an electrical ground! This unit must be electrically grounded in accordance with local codes or, in the absence of local codes, with the National Electrical Code (ANSI/NFPA 70) or the CSA C22.1 Electrical Code. Use the grounding lug provided in the element access compartment for grounding the unit.

Unbalanced 3-Phase Supply Voltage

Voltage unbalance occurs when the voltages of all phases of a 3-phase power supply are no longer equal. This unbalance reduces motor efficiency and performance. Some underlying causes of voltage unbalance may include: Lack of symmetry in transmission lines, large single-phase loads, and unbalanced or overloaded transformers. A motor should never be operated when a phase imbalance in supply is greater than 2%.

Perform the following steps to determine the percentage of voltage imbalance:

1. Check the line voltages of your 3-phase power supply where it enters the building and at a location that will only be dedicated to the unit installation. (at the units circuit protection or disconnect).

2. Determine the average voltage in the power supply.

In this example, the measured line voltages were 451, 460, and 453. The average would be 454 volts (451 + 460 + 453 = 1,364 / 3 = 454).

3. Determine the maximum deviation:

4. Determine percent of voltage imbalance by using the results from step 2 & step 3 in the following equation.

max voltage deviation from average voltage

% Voltage Imbalance = 100 x ______average voltage

The amount of phase imbalance (1.32%) is satisfactory since the amount is lower than the maximum allowable 2%. Please contact your local electric utility company if your voltage imbalance is more than 2%.

Blower Speed

The blower speed is preset at the factory. For optimum system performance and comfort, it may be necessary to change the factory set speed. Refer to Table 6, (page 22), Table 7, (page 23), Table 8, (page 24), & Table 9, (page 25) for the allowable operating range and adjustments. Units are shipped from the factory with the blower drive belt removed and located in the same compartment as the field electrical connections.

WARNING:

To avoid personal injury or property damage, make certain that the motor leads cannot come into contact with any uninsulated metal components of the unit.

To change the blower speed:

- 1. Disconnect all electrical power to the unit and remove the blower access panel.
- 2. Loosen the motor tension bars to allow removal of the blower belt from the motor sheave.
- 3. Loosen top set screw on motor sheave and turn clockwise to close (increases blower speed), or counterclockwise to open (decreases blower speed).
- 4. Replace belt on pulleys and position motor mounting plate to correct position for proper belt tension.
- 5. Tighten tension bar bolts.

Check all factory wiring per the unit wiring diagram and inspect the factory wiring connections to ensure none loosened during shipping or installation.

Low Voltage Connections - Thermostat

A two stage heating/two stage cooling 24 VAC heat pump thermostat is required for these units. **NOTE:** If optional electric heat is added, a 3 Stage Heat / 2 Stage Cool 24 VAC heat pump thermostat must be used.

Several options are available for a room thermostat depending on the accessories installed with the unit. Select a thermostat which operates in conjunction with the installed accessories. The thermostat should be mounted about five feet above the floor on an inside wall. The thermostat should be kept away from drafts, slamming doors, lamps, direct sunlight and supply air flow.

To install the thermostat:

- 1. Position the subbase on an inside wall and mark the mounting holes and thermostat cable openings.
- 2. Cut out the cable opening and route the thermostat cable from the unit's low voltage compartment to the thermostat location. The thermostat cable is supplied by the installer. For recommended wire sizes, see Figure 8 (page 9).
- 3. Connect the cable leads to the subbase or thermostat terminals and to the unit's low voltage terminal block as shown in Figure 8. System wiring diagrams are also provided on the inside of the control access panel and in Figure 11 (page 19) & Figure 12 (page 20).
- 4. Secure the subbase or thermostat to the wall using screws provided with the thermostat.

- 5. Install the correct thermostat housing to subbase.
- 6. Refer to thermostat instruction sheet for complete detailed mounting and operating information.

Defrost Cycle Timer

The defrost cycle timer controls the time interval of the hot gas defrost after the defrost sensor closes. It is located in the lower left corner of the defrost control board on the of the control panel. Three interval settings are available: 30, 60, and 90 minutes. Time setting selection is dependent on the climate where the unit is being installed. To set the cycle timer, place the timing pin on the defrost control board to the desired time interval post. **NOTE:** All units are shipped from the factory with the default time setting of 30 minutes. Longer settings are recommended for drier climate areas and shorter time intervals are recommended for moist climate areas.

Defrost Control Board

Operational Information

- Terminals **R RC** must have 24±V present between them in order for the time delay and defrost sequences to be operational.
- Jumpering the T2 DFT test pins will communicate to the board that the defrost T-stat is closed (if the compressor is running). The defrost thermostat tells

‡ "O" - Energized when thermostat system is in "Cool" Mode.

- - - Field Supplied Wiring, Use Solid Class II Copper Wire

NOTE: If thermostat has one combined "O/B" Terminal and an Economizer is installed, see Economizer Installation Instructions for unit wiring change for proper operation.

Figure 8. Typical Connections -2 Stage Cool/3 Stage Heat T-Stat

the board whether a defrost cycle needs to be started or terminated. **NOTE:** The defrost T-stat is closed at 32° F or below and is open at 68° F or above, but it's state is unknown if the temperature is between 32° F and 68° F.

- With the DFT closed, the unit will run for 30/60/90 minutes in heat mode and then defrost the outdoor coil. The defrost will turn off the outdoor fan, turn on the compressor and raise the coil temperature to 68° F. This will open the DFT and terminate the defrost. If the DFT does not open the defrost will end after 10 minutes.
- Jumpering the **TEST** terminal to the **C** (common) terminal (While the compressor is in heat mode), will over-ride the defrost boarrd and initiate a faster defrost test in 5, 10 or 15 seconds as determined by the 30, 60 or 90 minute defrost pin settings. (The factory setting is 30 minutes).
 - This will bypass the compressor off delay when the unit goes into defrost test and if left in defrost test, the delay will be bypassed when the test is terminated by the processor. NOTE: If the jumper is removed before the test is over, the processor will perform the remainder of a normal defrost. See step 2 above.
- The delay/no-delay pin concerns compressor operation during defrosts. To switch from no-delay to delay, remove the pin from the **no - delay** pin location and shift it to the **delay** pin location. The default setting is delay.
 - Reciprocating compressors should only use this setting in conjunction with an approved hard start kit.
 - Scroll compressors that have noise issues while going into or coming out of defrost should use this 30 second delay to reduce the defrost noise.
 - Manually initiating a defrost will cause the compressor to run continually when entering defrost.

Normal defrost operation

To test normal defrost operation when the temperature is above 35° F, jumper **R** to **DFT** on the 624656 board and allow the unit to run for 30 minutes. Defrost will continue until the **R** to **DFT** jumper is removed or for 10 minutes. Remove the jumper.

The 5 minute time delay feature can be shortened 1 time to 1 second by jumping the **Test** to **C** terminal. Remove the jumper and repeat as desired.

NOTE: If jumper is left on the **Test** to **common** pins permanently, the defrost cycle will become inoperable.

Defrost Test Procedure

- 1. Jumper **T2** to **DFT** at the test terminals.
- 2. With unit running in heat mode, short the **TEST** terminal to the common terminal near it. This will speed up the board and cause it to enter defrost mode in 5/10/15 seconds depending on the defrost time selection. Compressor delay will not function during speed-up.
- 3. This test will end in 5 seconds if the **TEST**-common short is not removed.

- 4. Remove both the short and the **T2** to **DFT** jumper to terminate the defrost cycle. The 30 second compressor delay should operate normally.
- 5. Test is complete, reset thermostat to home owner preference.

STARTUP & ADJUSTMENTS

Pre-Start Check List

- \sqrt{Verify} that the unit is level to allow proper condensate drainage.
- \sqrt{Verify} that the outdoor fan turns freely.
- $\sqrt{\rm Verify}$ that there is free airflow to and from the outdoor coil and that all clearance requirements are met.
- \sqrt{Verify} that the ductwork is sealed to prevent air leakage.
- $\sqrt{\rm Verify}$ that the power supply branch circuit overcurrent protection is sized properly.
- \sqrt{Verify} that the line voltage power leads are securely connected and the unit is properly grounded.
- \sqrt{Verify} that low voltage wires are securely connected to correct leads in the low voltage area of the control box.
- \sqrt{Verify} that the thermostat is wired correctly. The thermostat function switch should be set to **Off** and the thermostat fan switch should be set to **Auto**.
- $\sqrt{\rm Verify}$ that all exterior panels are replaced and securely fastened.

Startup-Up Procedures

A WARNING:

The unit is equipped with crankcase heaters. Allow 24 hours prior to continuing the start up procedures to allow for heating of the refrigerant compressor crankcase. Failure to comply may result in damage and could cause premature failure of the system. This warning should be followed at initial start up and any time the power has been removed for 12 hours or longer.

- Check unit for return air filters and condensate trap.
- Check all electrical wiring for loose connections and tighten as required.
- Close all electrical disconnects to energize the system.

Air Circulation

Leave the thermostat system switch set to **Off** and set the thermostat fan switch to **On**. The blower motor should run continuously. Check for air delivery at the register(s). Ensure that there are no obstructions at the registers or in the ductwork. Set thermostat fan switch to **Auto** the blower will shut down immediately. **NOTE:** If blower is turning opposite of arrow direction, shut off main power to the unit and switch any two field wires at the disconnect. **DO NOT** alter unit wiring.

Heat Pump Cooling Operation for 2 Stage

(2 individual refrigerant systems)

- 1. Set the thermostat system switch to Cool and the thermostat fan switch to Auto. Lower the thermostat temperature switch below room temperature and observe that the blower, both compressors and fan(s) energize. NOTE: This unit is equipped with a five minute anti-short cycle timer (ASCT) built in to the defrost control board for Stage 1 Heat/Cool (Y1). If the thermostat temperature level is re-adjusted, or if the system switch is re-positioned, Stage 1 compressor will not start immediately. Stage 2 Heat/Cool (Y2) has no ASCT protection and can operate immediately upon a call from the thermostat. Some thermostats may also have anti-short cycle protection built in causing a delay in one or both stages. A protective timer circuit could hold the compressor(s) off for up to five minutes following a previous operation or an interruption of the main power. Consult the operation manual for the type thermostat being installed.
- 2. Check that air cooler than room temperature is being discharged at the register. Ensure unit refrigerant pressures are in order. Blower should be turning in direction indicated by arrow. **NOTE:** If refrigerant pressures are abnormal and blower is rotating in the opposite direction of the arrow, shut off main power to the unit and switch any two field wires at the disconnect. Ensure proper rotation of both compressors. **DO NOT** alter unit wiring. Listen for any unusual noises. Locate the source and correct as needed.
- 3. After allowing the unit to run for several minutes, set the temperature selector above room temperature, verify that the fan, blower, and compressors cycle off with the thermostat.

Short Cycle Protection

Following the shut down sequence in the Heat Pump Cooling Operation Start-Up procedures, immediately lower the set point temperature of the thermostat slightly below room temperature and verify that the indoor blower is energized and after approximately 5 minutes the compressor and outdoor fans energize.

Heat Pump Heating Operation for 2 or 3 Stage

2 individual refrigerant systems + Electric Heat (Optional)

1. Set the thermostat system switch to Heat and the thermostat fan switch to Auto. Raise the thermostat temperature switch above room temperature and observe that the outdoor fans, compressor(s), and indoor blower energize. NOTE: This unit is equipped with a five minute anti-short cycle timer (ASCT) built in to the defrost control board for Stage 1 Heat/Cool (Y1). If the thermostat temperature level is re-adjusted, or if the system switch is re-positioned, Stage 1 compressor will not start immediately. Stage 2 Heat/Cool (Y2) has no ASCT protection and can operate immediately upon a call from the thermostat. Some thermostats may

also have anti-short cycle protection built in causing a delay in one or both stages. A protective timer circuit could hold the compressor(s) off for up to five minutes following a previous operation or an interruption of the main power. Consult the operation manual for the type thermostat being installed.

- 2. Verify the air being discharged at the registers is warmer than room temperature.
- 3. After allowing the unit to operate for several minutes, set the thermostat temperature switch below room temperature, verify that fans, blower, and compressors cycle off with the thermostat.

NOTE: If electric heat has been added, Stage 2 compressor will cycle off while Stage 3 heater elements are energized.

Field Installed Electric Heat (Optional)

This package heat pump system is designed to allow optional electric heat to be field installed as required by the building's particular heating load, as make up heat during defrost mode, and as Emergency Heat. **NOTE:** If optional electric heat is added, a 3 Stage Heat / 2 Stage Cool 24VAC heat pump thermostat must be used.

9, 18, 30, and 35 KW models are available for all unit models. Use <u>only</u> NORDYNE manufactured H5HK series heater kits with these units.

Install the heater kits as directed by the instruction sheet that comes as part of the heater kit. Follow all cautions and warnings as directed.

- 1. Set the thermostat to above room temperature.
- 2. Verify that Stage 1 compressor outdoor fan motors and blower are energized and the electric heat is energized.
- 3. After the unit has run for approximately five minutes, set the thermostat below room temperature and verify that the electric heat, Stage 1 compressor, fans, and blower have de-energized.

Emergency Heat

Most Heat Pump thermostats will include a system switch position termed EM.HT. or AUX.HT, etc. This is a back-up heating mode to be used only if a problem is suspected. With the system switch set to Emer. Ht., etc., the compressor(s) and outdoor fans will be locked off and supplemental heat (electric resistance heating) will be used as a source of heat. Sustained use of electric resistance heat in place of the heat pump will result in an increase in electric utility costs.

Defrost Mode

During cold weather heating operation, the outdoor unit will develop a coating of snow and ice on the outdoor section heat transfer coils. This is normal and the unit will defrost itself automatically. During the defrost cycle, the outdoor fans will stop while the compressor(s) continue to operate and heat the outdoor coil, causing the snow and ice to melt. During defrost, some steam may rise from the outdoor unit as the warm coil causes the melted frost to evaporate. Verify Operation of Over-Temperature Limit Control

A WARNING:

Uninsulated live components are exposed when element access panel is removed.

Make sure all access panels are in place and that there is power to the unit. Block the return airflow to the unit by installing a close-off plate in place of or upstream of the filter. Set the thermostat above room temperature and verify the unit operates with the correct operating sequence. The over-temperature limit control should turn off the electric strip heat within approximately four minutes. **NOTE:** The exact time depends on the efficiency of the close-off in the return air to the unit.

The circulating air blower should continue to run when the over-temperature limit control switch opens. Remove the close-off immediately after the over-temperature limit control opens. If the unit operates for more than four minutes with no return air, set the thermostat below room temperature, shut off the power to the unit, and replace the over-temperature limit control.

OPERATING SEQUENCE

The operating sequences for the heating, cooling, and fan modes are described below. Refer to Figure 11 (page 19) & Figure 12 (page 20) for the unit.

Heat Pump Cooling Mode

- 1. Set the thermostat system switch to **Cool** and the thermostat fan switch to **Auto**.
- **NOTE:** Heat pump thermostats typically energize reversing valves through the **O** terminal with the system switch set to **Cool**. Reversing valves will remain energized until the system switch is moved to **Off**, **Heat**, or **Emer.Heat**. Consult the instructions for the specific type of thermostat being used for proper unit operation.
- 2. On a call for cooling the thermostat closes, applying 24 VAC directly to **Y1**, **G**, and **Y2** if Stage 2 cooling is required. **NOTE**: Stage 1 Compressor (**Y1**) has a built in 5 minute anti-short cycle timer (ASCT) function built into the defrost board. Any loss of power or 24V interruption to the defrost board will cause the ASCT to reset and start the timing cycle over.
- 3. G applies 24VAC to the main circulating blower circuit.
- 4. Y1 & Y2 apply 24VAC through all safety switches before energizing their respective compressor contactors.
- Outdoor fan contactor is energized through auxiliary contacts on either of the compressor contactors once energized.
- 6. As the thermostat is satisfied the contactors are deenergized in sequence.
- 7. The circulating blower motor is de-energized immediately.

Blower Mode

- 1. On a call for fan operation, the thermostat applies 24 VAC directly to the **G** terminal and the blower contactor.
- 2. The circulating blower is energized immediately.

Heat Pump Heating Mode

- 1. Set the thermostat system switch to **Heat** and the thermostat fan switch to **Auto**. On a call for heating, the thermostat closes, applying 24 VAC to **Y1**, **G**, & **Y2** if Stage 2 heating is required.
- 2. G applies 24VAC to the main circulating blower circuit.
- 3. Y1 & Y2 apply 24VAC through all safety switches before energizing their respective contactors.
- 4. Outdoor fan contactor is energized through auxiliary contacts on either of the compressor contactors once energized.
- 5. As the thermostat is satisfied the contactors are deenergized in sequence.
- 6. The circulating blower motor is de-energized immediately.

Heat Pump Heating Mode + Optional Electric Heat

(Stage 3 Heat or Emergency Heat)

- If optional electric heat is added, a 3 Stage Heat / 2 Stage Cool 24 VAC heat pump thermostat must be used.
- This heating system energizes the fan on a call for heat. Select the GAS setting for fan mode of operation during thermostat configuration.
- Several options are available for a room thermostat depending on the accessories installed with the unit. Consult the instructions for the specific type of thermostat being used for proper unit operation.

On a call for heating the thermostat closes, applying 24 VAC to **Y1**, **G**, & **Y2** if Stage 2 heating is required. If the desired room temperature is not maintained, Stage 3 heat will call applying 24 VAC to **W2**, energizing the electric heat kits. **NOTE:** If Stage 3 Electric Heat is energized, Stage 2 compressor will cycle off.

As the thermostat is satisfied the contactors are deenergized in sequence.

Emergency Heat Mode

Set the thermostat system switch to **Emer.Heat** and the thermostat fan switch to **Auto**. On a call for heating the thermostat closes, applying 24 VAC to **W2** only. Compressors and outdoor fans will not operate when Emergency Heat mode is selected. Sustained use of electric resistance heat in place of the heat pump will result in an increase in electric utility costs.

Unit Fails to Operate

If the unit does not operate properly in either the heating or cooling mode, be certain to check the following:

- 1. The thermostat is operating properly.
- 2. Electrical power to the unit is turned on.
- 3. All safety switches are closed.
- 4. The service doors are in place.
- 5. Transformer circuit breaker is reset.

UNIT MAINTENANCE

△ WARNING:

To avoid risk of electrical shock, personal injury, or death, disconnect all electrical power to the unit before performing any maintenance or service. The unit may have more than one electrical supply.

△ CAUTION:

Use care when removing parts from this unit. Personal injury can result from sharp metal edges in equipment of sheet metal construction.

Routine Maintenance

Proper maintenance is important to achieve optimum performance from the unit The ability to properly perform maintenance on this equipment requires certain mechanical skills and tools. If you do not possess these skills, contact your dealer for maintenance. Consult your local dealer about the availability of maintenance contracts. At a minimum, routine maintenance should include the following:

Air Filters

A WARNING:

Never operate the unit without a filter in place. Dust and lint in the return air can build up on internal components, resulting in loss of efficiency, equipment damage, and possible fire risk.

It is recommended that you inspect and clean or replace the air filters every 3 to 4 weeks. Units are equipped with 2" pleated disposable filters. Filter rack is adjustable for 1" permanent type filters. **Do not use 1" disposable filters.** Replace with filters of like size and kind rated for at least 500 feet per minute.

Blower Compartment

Make sure to verify proper operation after servicing. The blower compartment should be cleaned monthly during the heating and cooling seasons to remove any dirt and lint that may have accumulated in the compartment or on the blower and motor. Buildup of dirt and lint on the blower and motor can create excessive loads on the motor resulting in higher than normal operating temperatures and possible shortened service life.

Condensate Drain & Outdoor Coil

Inspect the condensate drain and outdoor coil at the beginning of each cooling season. Remove any debris. Clean the outdoor coil and hail guard louvers (optional) as necessary using a mild detergent and water. Rinse thoroughly with water.

Electrical

Inspect the electrical connections for tightness at the beginning of each heating and cooling season. Service as necessary.

Motor Lubrication

IMPORTANT NOTE:

Lubrication of the motors in this unit is not required. Do not lubricate any motor in this product.

The motors for the circulating air blower and outdoor fans, are pre-lubricated at the factory. No further oiling is required for the life of this product.

Refrigerant Charging

△ WARNING:

The units are shipped fully charged and ready for installation. When a system is installed according to these instructions, no refrigerant charging is required. If repairs make it necessary for evacuation and charging, it should only be done by qualified, trained personnel thoroughly familiar with this equipment. Some local codes require licensed installation/service personnel to service this type of equipment. Under no circumstances should the owner attempt to install and/or service this equipment. Failure to comply with this warning could result in property damage, personal injury, or death.

The system refrigerant charge can be checked and adjusted through the service ports provided on compressor suction and liquid lines. Use only gauge lines which have a "Schrader" depression device present to actuate the valve. Draw a vacuum on the gauge lines to remove air or moisture before attaching them to the service ports on the unit. Refrigerant charging must be done by qualified personnel familiar with safe and environmentally responsible refrigerant handling procedures. Refer to charging instructions on page 26, Figure 13 - Figure 14 (page 27) or the Unit Rating Plate for proper amount of charge.

REPLACEMENT PARTS

Replacement parts are available through all NORDYNE distributors. When ordering, remember to have the complete Model and Serial number of the unit.

Transformers Thermostats Relays	Electrical Contactors Capacitors Defrost Boards	Temperature Limit Switches Pressure Switches
Fan Motor	Motors Blower Motor	Compressors
Expansion Valves Blower Assembly Gaskets	Components Cabinet Panels Fan Grille Reversing Valves	Filter Driers Filters Hail Guards

COMPONENT FUNCTIONS

High Pressure switch (HPS)- Prevents compressors from operating at elevated pressures. High pressure switches are located on both compressor hot gas lines and are fitted with Schrader cores. The switch is non-adjustable set to open at 650 PSIG and must be manually reset.

Low Pressure switch (LPS)- Prevents compressors from operating at sufficiently low pressures due loss of charge. Low pressure switches are located on both compressor return gas lines and are fitted with Schrader cores. The switch is non-adjustable set to open at 5 PSIG and close at 20 PSIG.

Freezestat - Prevents evaporator coils from freezeups due to lack of airflow or below normal return air temperatures. The switch is a non-adjustable, sealed, bi-metal sensor set to open at 28° F and closes at 57° F.

Over-Temperature Limit Control - The over-temperature limit control acts to prevent the air temperature leaving the unit from exceeding the maximum outlet air temperature. If the limit opens, electric heat will shut off. Provide w/ electric heat kits.

Defrost Control Board - This control includes - 5 minute anti-short cycle timer protection for Stage 1 Heat/Cool, defrost time interval selection, and reversing valve, outdoor fan, and auxiliary heat operation during defrost control. See Operating Sequence (page 11).

Defrost Temperature Sensor - Switches are located on the hairpin end of both outdoor coils. The switch is a non-adjustable, sealed, bi-metal sensor set to open at 68° F and closes at 30° F. When closed, compressor run time is accumulated and initiates coil defrost dependent on time interval selected.

Heat Pump Relay (HPR) - The heat pump relay is located to the left side of the unit's main control panel. It is required for proper operation of an economizer (optional) in the heat pump Heating mode, if installed. If installing an economizer in this unit, refer to the setup procedures in the Economizer Installation Instructions.

Blower Isolation Relay - The isolation relay is located on the right of the main control panel, near the transformer. It is required when using an electric heat kit to prevent a return signal to the thermostat when a W1 or W2 call for heat is made.

FIGURES & TABLES

Figure 9. Q6SP Components

Physical Data

Dimensions shown in inches (mm)

TOP VIEW

Figure 10. Q6SP - 090 & 120 Series

HEAT EXCHANGER END

BOTTOM PAN TOP VIEW

	UN	IIT	SHIPPING		NG CENTER OF GRAVITY				со	RNER	WEIGH	ITS			UNIT HEIGHT*	
MODEL	WEIG	äHI⁺	WEI	GHI	INCHE	S (MM)	4	4	E	3	(;	[)	VERTICAL	HORIZONTAL
NO.	LBS.	KG.	LBS.	КG	А	в	LBS.	KG.	LBS.	KG	LBS.	KG.	LBS.	KG	DUCT APPLICATIONS	DUCT APPLICATIONS
Q6SP-090(C,D)	1065	484	1205	548	45 (1143)	27 (686)	218	99	255	116	320	145	273	124	E1 (120E)	EE 1/4 (1400)
Q6SP-120(C,D)	1130	514	1270	577	44 (1118)	27 (686)	226	103	264	120	345	157	295	134	51 (1295)	55-1/4 (1409)

* Baserails are not intended to be removed. Information provided is total unit height for Horizontal duct applications or height dimension added to selected roof curb height for Vertical duct applications.

‡ Unit weight without packaging or field installed accessories.

† Field Installed Kit

Table 1. Unit Weights & Center of Gravity

Electrical Data

MODEL NUMBER Q6SP- (SEE NOTES 2 # 2)	NOMINAL UNIT VOLTAGE	HIGH STATIC KIT #	со	COMPRESSORS			li M (SEI	NDOOR MOTOR E NOTE 4)	TOTAL UNIT RLA	UNIT CIRC	only Cuit
(SEE NOTES 2 & 3)	(SEE NOTE I)		QTY	RLA	LRA	FLA	HP	FLA	RLA	MCA	МОР
			FACTOR	Y UNIT E	LECTRIC	AL DATA					
-090Ca	208 - 230 V	Fastary Otd	2 ea.	13.1	83.1	2.3	4	3.2 - 3.1	34.1	37 - 37	50 - 50
-090Da	460 V	Factory Stu.	2 ea.	6.1	41	1.2		1.5	16.1	18	20
-120Ca	208 - 230 V	Eastory Std	2 ea.	15.6	110	2.3	1 5	4.4 - 4.2	40.3	44 - 44	50 - 50
-120Da	460 V	Factory Stu.	2 ea.	7.8	52	1.2	1.5	2.1	20.1	22	25
		MEDIUN	/I & HIGH	STATIC I	DRIVE EL	ECTRICAL D	ATA				
-090Ca	208 - 230 V	001040	2 ea.	13.1	83.1	2.3	4.5	4.4 - 4.2	35.3	39 - 38	50 - 50
-090Da	460 V	921646	2 ea.	6.1	41	1.2	1.5	2.1	16.7	18	20
-090Ca	208 - 230 V	001647	2 ea.	13.1	83.1	2.3	0	6.0 - 5.8	36.9	40 - 40	50 - 50
-090Da	460 V	921647	2 ea.	6.1	41	1.2	2	2.9	17.5	19	25
-120Ca	208 - 230 V	021645	2 ea.	15.6	110	2.3	2	6.0 - 5.8	41.9	46 - 46	60 - 60
-120Da	460 V	921045	2 ea.	7.8	52	1.2	2	2.9	20.9	23	30

Table 2. Q6SP Electrical Data - Multiple Supply Circuits / Unit Only

	ELECTRIC HEAT KIT (FIELD INSTALLED WITH MULTIPLE CIRCUIT KIT # 917468) ELECTRICAL DATA TABLE - HEATER ONLY											
MODEL #	NOMINAL	LINE	ACTUAL	HEATER AMPS	HEATER ONLY CIRCUIT							
(SEE NOTE 6)	HEATER KW	VOLTAGE	HEATER KW	(LINE)	MCA	МОР						
009Q-01	9	208 / 240	6.76 / 9.0	18.76 / 21.65	23.5 / 27.1	25 / 30						
018Q-11	18	208 / 240	13.07 / 17.4	36.28 / 41.86	45.3 / 52.3	50 / 60						
030Q-22	30	208 / 240	21.63 / 28.80	60.0 / 69.3	75.1 / 86.6	80 / 90						
035Q-22	35	208 / 240	26.1 / 34.8	72.55 / 83.72	90.7 / 104.6	100 / 110						
009S-01	9	480	9.9	11.91	14.9	15						
018S-01	18	480	18	21.65	27.1	30						
030S-01	30	480	28.8	34.64	43.3	45						
035S-01	35	480	34.8	41.86	52.3	60						

Table 3. H5HK Electrical Data - Multiple Supply Circuits

NOTES:

1. To achieve the rated unit performance, unit voltage should be within 2% of nominal.

- 2. For C series units:
 - Nominal Unit Input Voltage = 208-230 Volt, 60 Hertz, 3 Phase Minimum allowed unit voltage = 187V Maximum allowed voltage = 253V
- 3. For D series units:
 - Nominal Unit Input Voltage = 460 Volt, 60 Hertz, 3 Phase Minimum allowed unit voltage = 414V Maximum allowed voltage = 506V
- 4. Indoor Motors meet 2010 DOE requirements (Premium Efficient)
- 5. Refer to High Static Drive Kit Installation Instructions for additional information
- 6. Refer to H5HK Kit Installation Instructions for additional information
 - FLA = Full Load Amps
 - MCA = Minimum Circuit Ampacity
 - RLA = Rated Load Amps
 - MOP = Maximum Over-Current Protection
 - LRA = Locked Rotor Amps
- 7. Refer to Table 4, (page 18) for single circuit MCA/MOP data

MODEL	NOMINAL	HIGH		SINGLE CIRCUIT (UNIT + HEATER KIT) SEE NOTE										
NUMBER	UNIT	STATIC		M	CA			М	OP					
Q6SP-	VOLTAGE	KIT #	9 KW	18 KW	30 KW	35 KW	9 KW	18 KW	30 KW	35 KW				
			FAC	TORY UNIT E	LECTRICAL	DATA								
-090Ca	208 - 230 V	Fastary Otd	48 - 51	69.5 - 77	99.2 - 111	115 - 129	50 - 60	70 - 80	100 - 125	125 - 150				
-090Da	460 V	Factory Stu.	27	39	54.8	64	30	40	60	70				
-120Ca	208 - 230 V	Easton, Std	52 - 56	74 - 81	104 - 115	119 - 133	60 - 60	80 - 90	110 - 125	125 - 150				
-120Da	460 V	Factory Stu.	29.1	42	58	67	30	45	60	70				
			MEDIUM & HIGH STATIC DRIVE ELECTRICAL DATA											
-090Ca	208 - 230 V	001646	49 - 53	71 - 78	100 - 112	116 - 130	50 - 60	80 - 80	110 - 125	125 - 150				
-090Da	460 V	921646	27	39.2	56	64.4	30	40	60	70				
-090Ca	208 - 230 V	001647	51 - 54	73 - 79.1	102 - 113	118 - 131	60 - 60	80 - 80	110 - 125	125 - 150				
-090Da	460 V	921647	29	40	56.2	66	30	40	60	70				
-120Ca	208 - 230 V	021645	54 - 57	76 - 83	105 - 117	121 - 135	60 - 60	80 - 90	110 - 125	125 - 150				
-120Da	460 V	921045	29.9	43	59	68	30	45	60	70				

NOTE: Nordyne specifically recommends the use of the 917468 Dual Circuit adapter kit for all applications of H5HK 30kW & 35kW Electric Heat Kits.

Table 4. Q6SP Electrical Data - Single Supply Circuits

Figure 11. Ladder Diagram for Q6SP-090/120 (C/D) Series

Figure 12. Wiring Diagram for Q6SP - 090/120 (C/D) Series

Blower Performance Tables

This equipment is outfitted with a belt driven blower assembly in order to accommodate a large variety of duct configurations and airflow selections. The blower has been factory inspected for proper alignment, operation and rotational direction prior to the drive motor being situated in the shipping position. The blower drive belt is located with these instructions and must be installed by the service technician. For a more detailed explanation of belt driven blower drives and the operation of their components please refer to any of the installation instructions listed below for the high static drive kits.

The factory standard drive installed in these units has been set to deliver 400 Cfm/ton at an External Static Pressure (ESP) of 0.25-0.30 in-Wg. Table 6, (page 22), Table 7, (page 23), Table 8, (page 24), & Table 9, (page 25) show the full blower curves of these drive configurations and can be utilized to easily set the adjustable motor sheave for alternate configurations. Refer to the Legend below for a description of the table information. Once a sheave setting has been made, always inspect the blower amp draw to ensure that it is less then the service factor amps listed on the motor. For systems that include a large number of accessories or have very restrictive duct systems, alternate drive kits are available – refer to Table 5 below for the applicable kits. The full blower curves for the HSD kits can be found in the applicable kit installation instructions or in the unit technical service literature.

Indicates a recommended unit operational point

TABLE LEGEND

 3493
 Indicates an allowable setting that is not recommended for unit operation[†]

 1017
 [†] These operational points should be carefully examined by the installer for proper unit setup and heater

 2.07
 operation if used.

Indicates a setting that is not permitted for unit operation

UNIT MODEL #	MOTOR HP	E.S.P. RANGE (IN-WG)	BLOWER RPM RANGE (DF)	DOWN-FLOW KIT	BLOWER RPM RANGE (HF)	HORIZONTAL KIT
	1.5 Hp	0.1 - 1.1	552 - 806	921646	552 - 807	921646
-090(C/D)a	2 Hp	0.4 - 1.5	677 - 935	921647	680 - 930	921647
-120(C/D)a	2 Hp	0.1 - 1.4	650 - 911	921645	659 - 919	921645

NOTE: Refer to Q6SP TSL or Accessory Kit Installation Instructions for actual blower charts

Table 5. Q6SP Series Alternate Accessory Blower Drives

Q6SP-090(C/D)a

Factory Standard: 1Hp Down-flow Performance Chart

‡ Indicates Factory Sheave Setting

Extornal						Ac	ljustable l	Notor She	eave Setti	ng				
Unit Static (in-Wg)	Operating @ 230 or 460 Volts	Fully Closed	1/2 Turn Open	1 Turn Open	1.5 Turns Open	2 Turns Open	2.5 Turns Open	3 Turns Open	3.5 Turns Open ‡	4 Turns Open	4.5 Turns Open	5 Turns Open	5.5 Turns Open	6 Turns Open
	CFM							3780	3612	3444	3268	3092		
0.1	RPM							602	580	558	536	513		
	kW							0.92	0.83	0.75	0.69	0.63		
	CFM						3717	3545	3361	3177	2979	2781		
0.2	RPM						624	604	583	561	538	515		
	kW						0.96	0.86	0.77	0.69	0.63	0.57		
	CFM					3644	3465	3286	3077	2867	2635	2402		
0.3	RPM					648	627	606	585	564	541	518		
	kW					0.99	0.89	0.79	0.70	0.62	0.56	0.50		
	CFM				3542	3356	3156	2956	2726	2495	2212			
0.4	RPM				672	651	630	609	588	566	544			
	kW				1.01	0.90	0.81	0.71	0.63	0.54	0.48			
	CFM			3487	3270	3053	2834	2615	2321					
0.5	RPM			697	675	653	632	611	590					
	kW			1.05	0.93	0.82	0.73	0.63	0.54					
	CFM		3412	3181	2945	2709	2428							
0.6	RPM		717	698	677	656	635							
	kW		1.07	0.95	0.84	0.74	0.64							
	CFM		3131	2849	2557	2264								
0.7	RPM		719	704	682	659								
	KW		0.97	0.85	0.74	0.63								
	CFM	3003	2783											
0.8	RPM	744	/21											
	KW	0.99	0.87											
		2631	2337											
0.9	RPM	/48	/23											
	KW	0.87	0.74											
1.0	KPM													
	kW													

Values includes losses for: Unit Casing, 2" Disposable (Pleated) Filters & Dry Evaporator Coil When utilized with H5HK Heater kits, not all operational points shown may be available for use. Refer to the H5HK Installation Instructions to determine the minimum airflow requirements of the applicable heater assembly. Deduct 250 Cfm for electric heater kit

Table 6. Blower Performance for Q6SP-090(C,D)a Series(7.5 Ton Downflow Models Only)

Q6SP-090(C/D)a

Factory Standard: 1Hp Horizontal Performance Chart

‡ Indicates Factory Sheave Setting for Pre-configured Units

Extornal						Ad	ljustable I	Motor She	eave Setti	ng				
Unit Static (in-Wg)	Operating @ 230 or 460 Volts	Fully Closed	1/2 Turn Open	1 Turn Open	1.5 Turns Open	2 Turns Open	2.5 Turns Open	3 Turns Open	3.5 Turns Open ‡	4 Turns Open	4.5 Turns Open	5 Turns Open	5.5 Turns Open	6 Turns Open
	CFM								3638	3456	3288	3119		
0.1	RPM								579	556	535	514		
	kW								0.86	0.77	0.69	0.61		
	CFM						3720	3548	3354	3160	2975	2789		
0.2	RPM						626	603	581	558	537	516		
	kW						0.97	0.87	0.78	0.69	0.62	0.55		
	CFM					3623	3441	3259	3049	2839	2635	2430		
0.3	RPM					651	628	605	583	560	540	519		
	kW					1.00	0.89	0.79	0.71	0.63	0.55	0.48		
	CFM				3550	3352	3147	2942	2710	2478	2231			
0.4	RPM				671	654	631	607	585	563	542			
	kW				1.03	0.92	0.82	0.72	0.64	0.56	0.48			
	CFM			3482	3280	3077	2833	2589	2270					
0.5	RPM			690	673	656	633	609	536					
	kW			1.06	0.94	0.83	0.73	0.64	0.55					
	CFM			3192	2964	2735	2421							
0.6	RPM			692	676	659	635							
	kW			0.96	0.85	0.74	0.64							
	CFM		3148	2879	2566	2253								
0.7	RPM		719	694	678	661								
	kW		0.99	0.86	0.75	0.63								
	CFM	3108	2808	2509										
0.8	RPM	744	721	696										
	kW	1.04	0.89	0.76										
	CFM	2712	2312											
0.9	RPM	747	723											
	kW	0.92	0.75											
	CFM													
1.0	RPM													
	kW													

Values includes losses for: Unit Casing, 2" Disposable (Pleated) Filters & Dry Evaporator Coil. When utilized with H5HK Heater kits, not all operational points shown may be available for use. Refer to the H5HK Installation Instructions to determine the minimum airflow requirements of the applicable heater assembly. Deduct 250 Cfm for electric heater kits

Table 7. Blower Performance for Q6SP-090(C,D)a Series (7.5 Ton Horizontal Models Only)

Q6SP-120(C/D)a

Factory Standard: 1.5Hp Down-flow Performance Chart

‡ Indicates Factory Sheave Setting

External		Adjustable Motor Sheave Setting												
Unit Static (in-Wg)	Operating @ 230 or 460 Volts	Fully Closed	1/2 Turn Open	1 Turn Open	1.5 Turns Open	2 Turns Open	2.5 Turns Open ‡	3 Turns Open	3.5 Turns Open	4 Turns Open	4.5 Turns Open	5 Turns Open	5.5 Turns Open	6 Turns Open
	CFM							4468	4349	4230	4086	3942	3804	3665
0.1	RPM							706	689	672	653	633	616	599
	kW							1.54	1.43	1.32	1.23	1.14	1.04	0.93
	CFM						4412	4244	4124	4003	3847	3690	3546	3402
0.2	RPM						725	708	691	674	655	635	618	601
	kW						1.58	1.44	1.34	1.24	1.15	1.06	0.96	0.86
	CFM						4192	4042	3888	3733	3589	3445	3287	3129
0.3	RPM						727	710	693	676	657	637	620	603
	kW						1.49	1.36	1.26	1.15	1.07	0.99	0.89	0.78
	CFM					4106	3951	3796	3631	3466	3316	3165	2993	
0.4	RPM					745	729	712	695	678	659	639	623	
	kW					1.51	1.39	1.27	1.17	1.08	0.99	0.91	0.81	
	CFM				3998	3871	3706	3540	3368	3196	3017			
0.5	RPM				761	747	731	714	697	680	661			
	kW				1.51	1.42	1.30	1.18	1.09	0.99	0.90			
	CFM		4016	3903	3760	3616	3428	3240	3052					
0.6	RPM		791	777	763	749	733	716	700					
	kW		1.59	1.49	1.41	1.32	1.20	1.09	0.98					
	CFM	3903	3801	3693	3512	3330	3118							
0.7	RPM	806	793	779	766	752	736							
	kW	1.59	1.48	1.39	1.31	1.23	1.10							
	CFM	3654	3542	3406	3214	3022								
0.8	RPM	808	795	781	768	754								
	kW	1.49	1.38	1.27	1.19	1.11								
	CFM	3356	3232	3074										
0.9	RPM	810	797	783										
	kW	1.36	1.26	1.15										
	CFM	3013												
1.0	RPM	812												
	kW	1.21												

Values includes losses for: Unit Casing, 2" Disposable (Pleated) Filters & Dry Evaporator Coil. When utilized with H5HK Heater kits, not all operational points shown may be available for use. Refer to the H5HK Installation Instructions to determine the minimum airflow requirements of the applicable heater assembly. Deduct 250 Cfm for electric heater kits

Table 8. Blower Performance for Q6SP-120(C,D)a Series (10 Ton Downflow Models Only)

Q6SP-120(C/D)a

Factory Standard: 1.5Hp Horizontal Performance Chart

‡ Indicates Factory Sheave Setting for Pre-configured Units

Extornal						Ac	ljustable N	Notor She	eave Setti	ng				
Unit Static (in-Wg)	Operating @ 230 or 460 Volts	Fully Closed	1/2 Turn Open	1 Turn Open	1.5 Turns Open	2 Turns Open	2.5 Turns Open ‡	3 Turns Open	3.5 Turns Open	4 Turns Open	4.5 Turns Open	5 Turns Open	5.5 Turns Open	6 Turns Open
	CFM								4425	4303	4157	4011	3878	3745
0.1	RPM								688	671	653	635	617	599
	kW								1.44	1.33	1.23	1.12	1.04	0.95
	CFM							4366	4227	4087	3951	3815	3665	3515
0.2	RPM							707	690	672	655	637	619	601
	kW							1.48	1.36	1.25	1.15	1.05	0.97	0.88
	CFM						4278	4137	3994	3850	3694	3537	3369	3201
0.3	RPM						725	709	692	674	656	638	620	602
	kW						1.50	1.39	1.28	1.17	1.07	0.98	0.89	0.80
	CFM					4198	4061	3923	3763	3602	3425	3248	3071	
0.4	RPM					743	727	711	694	676	658	640	623	
	kW					1.52	1.41	1.30	1.19	1.09	0.99	0.89	0.81	
	CFM					3969	3816	3662	3490	3318	3127			
0.5	RPM					746	729	712	695	677	660			
	kW					1.44	1.32	1.20	1.10	0.99	0.89			
	CFM				3851	3719	3543	3366	3181	2996				
0.6	RPM				764	749	732	714	698	681				
	kW				1.44	1.33	1.22	1.11	1.00	0.90				
	CFM			3749	3594	3438	3232	3026						
0.7	RPM			781	767	752	734	716						
	kW			1.44	1.33	1.22	1.11	1.00						
	CFM		3614	3487	3298	3109								
0.8	RPM		795	785	771	756								
	kW		1.44	1.34	1.22	1.10								
	CFM	3515	3352	3184	2946									
0.9	RPM	813	801	789	773									
	kW	1.43	1.32	1.21	1.09									
	CFM	3218	2993											
1.0	RPM	816	805											
	kW	1.31	1.18											

Values includes losses for: Unit Casing, 2" Disposable (Pleated) Filters & Dry Evaporator Coil. When utilized with H5HK Heater kits, not all operational points shown may be available for use. Refer to the H5HK Installation Instructions to determine the minimum airflow requirements of the applicable heater assembly.

Deduct 250 Cfm for electric heater kits

Table 9. Blower Performance for Q6SP-120(C,D)a Series (10 Ton Horizontal Models Only)

DO NOT use these charts for two stage systems operating only under a single stage call for cooling.

DO NOT use these charts in systems that do not have all the outdoor fans energized, or have the fans cycling under a low-ambient control. Refer to the low-ambient kit instructions for more information, if applicable.

This equipment's cooling systems contain refrigerant under high pressure, always use safe practices when servicing the unit. Always review the factory literature and safety warnings prior to servicing.

All Q6SP-090/120 units are shipped from the factory with the proper amount and type of refrigerant. Always inspect the unit rating label to determine the units information prior to working on the system. Do not mix different refrigerants or charge the unit with a refrigerant not listed on the unit rating label.

The charging charts Figure 13 and Figure 14 (page 27) are valid for a variety of indoor, return air conditions and are most highly influenced by the outdoor ambient temperature, outdoor fan operation and the unit operating voltage. Before referencing the charts below, always ensure that all compressor circuits are energized and have stable operation. As can be seen in the charging charts, the ideal system sub-cooling can vary over the range of operation. Always reference the charts to determine the ideal amount of sub-cooling for a given liquid pressure. Units charged to other values will not perform at the rated unit efficiency (EER) or rated Coefficient of Performance (COP) in heating mode.

To inspect a systems operation, using quality instruments, match the measured liquid temperature to the units chart. The measured liquid pressure reading should be within 3% of the value shown for most installations. For two stage systems, the charts are valid for both compressor stages.

For systems that are operating with more then a 5% deviation, inspect the unit for the proper voltage and phase balance and the refrigeration system for leaks.

Units that are operating at less then 95% of the nominal voltage or with a 2% phase imbalance may see a more significant deviation then the amount stated above.

Always use safe and environmentally sound methods for refrigerant handling. When repairing system leakages, always utilize a nitrogen (inert) gas to protect the refrigerant system and pressure check the repair before re-charging. Always replace the filter-dryers when performing any repair to the refrigeration system with one capable of acid removal. After completing the repairs, evacuate the system to 350-500 microns and weight in the refrigerant to the amount specified on the unit rating label.

Figure 14. Charging Chart for 10 Ton Units

DO NOT use these charts for two stage systems operating only under a single stage call for heating. (Or for units with an electric heat kit installed, that they are not operating on a 3rd stage call for heat.)

DO NOT utilize the charts in systems that do not have all the outdoor fans energized, or have the fans cycling under a low-ambient control. Low-ambient controls are for cooling operation. In heating mode, the low ambient control should be disabled. Unless the unit is in defrost mode, the outdoor fans should always operate in conjunction with the compressors.

Read all notes and warnings for the Cooling-mode charging charts prior to utilizing these Heating-mode charge verification charts.

All Q6SP-090/120 units are shipped from the factory with accumulators installed in the refrigeration systems and the correct factory charge. The charge verification charts Figure 15 & Figure 16 (page 29) are provided for quick reference when the unit is in heating-mode and allow the inspection of the liquid line pressures and temperature for both stage one and stage two. In heating mode, stage one and two will operate at similar but slightly different operating points.

Before using these charts, determine the Outdoor ambient temperature and the Return air temperature to the unit. (If the unit is equipped with an economizer, determine the mixed air temperature entering the filters.)

Locate the appropriate location on the units verification chart based on those measurements to determine the ideal liquid line pressure and temperature. Ensure that all outdoor fans are operating, that both compressors are running and that the outdoor coils are free from any frost accumulation. Additionally, ensure that the system is not operating in defrost mode before inspecting the system. Always use quality instruments that are in good working order to measure the actual operating point of the refrigeration system. The liquid line temperature should be within 2 degrees of the ideal value and the pressure should be within 2%. For a more accurate comparison to the chart, record both the stage one and stage two readings and compare them to each other. If the system pressures are with in 8 psig of each other and the temperatures are with 1.5° F then average the values together and compare them to the chart values.

The most reliable way of ensuring that the system is at the correct charge is to evacuate the system and weigh in the charge to the amount shown on the rating label. However, if an inspection with these verification charts does not line up with the values shown and the ambient temperature is above 40° F, then a more accurate way to inspect the system for proper charge is with the cooling mode charging charts. Switch the unit into cooling mode and allow it to operate and stabilize for a few minutes then inspect the unit operation with the cooling mode charts and procedures.

Before changing the unit charge, always inspect the following items first:

- 1. Inspect the liquid line temperature on the inlet and outlet of the filter dryers. If it is the factory dryer and in good condition there should be no temperature difference. If the ΔT is larger than 5°, replace the filter dryer with one that is bi-directional and has acid removal capability. Refer to the unit RPL for the recommended part number and size.
- 2. Inspect the units input voltage. Units operating at less than 95% of the nominal voltage may deviate more from the chart then previously stated.
- 3. Inspect the input voltage for a phase imbalance. Units with greater then a 2% disparity will not operate at the rated performance.
- 4. Verify that the unit filters are installed and are clean. The pressure drop across the filters should not exceed 0.08 in-W.C.
- 5. Inspect the indoor coil, indoor blower and blower motor for cleanliness, clogging, and proper operation. Verify the drive belt is in good condition and properly tightened.
- 6. Inspect the system for leaks. If a leak cannot be located and stage one and two are operating with similar characteristics and both stages are sub-cooled, the system charge is probably correct. Re-inspect the return air and ambient temperatures and verify that the correct system point on the verification chart was selected.

Always use safe and environmentally sound methods for refrigerant handling. When repairing system leakages, always utilize a nitrogen (inert) gas to protect the refrigerant system and pressure check the repair before re-charging. Always replace the filter-dryers when performing any repair to the refrigeration system with one capable of acid removal. After completing the repairs, evacuate the system to 350-500 microns and weigh in the refrigerant to the amount specified on the unit rating label.

Figure 15. Verification Chart for 7 1/2 ton units

Figure 16. Verification Chart for 10 ton units

INSTALLATION / PERFORMANCE CHECK LIST

INSTALLATION ADDRESS:		
CITY	STATE	
UNIT MODEL #		
UNIT SERIAL #		
Unit Installed Minimum clearances per Figure 1 (page 4)?	YES	NO

ELECTRICAL SYSTEM			
Electrical connections tight?	YES	NO	
Line voltage polarity correct?	YES	NO	
Rated Voltage:		VOLTS	
L1-L2 Volts:		VOLTS	
L1-L3 Volts:		VOLTS	
L2-L3 Volts:		VOLTS	
Avg. Volts:		VOLTS	
Max. deviation of voltage from avg. volts:		VOLTS	
% Volt imbalance:		VOLTS	

GENERAL			
Is the thermostat calibrated?	YES	NO	
Is the thermostat level?	YES	NO	
Is the heat anticipator setting correct?	YES	NO	
Was information reviewed with the customer?	YES	NO	
Was the literature package left with the unit?	YES	NO	
Date Installed:			
Installation Type: Horizontal / Downflow			

PROPOSITION 65 WARNING:

WARNING: This product contains chemicals known to the state of California to cause cancer.

WARNING: This product contains chemicals known to the state of California to cause birth defects or other reproductive harm.

INSTALLER NAME:		
CITY	STATE	
REFRIGERATION	SYSTEM	
Was unit given 24 hr warm up period for crankcase heaters?	YES	NO
Ambient Temperature		°F
Return Air Temperature		°F
Stage-1 Liquid Pressure (high side)		
Stage-1 Liquid Temperature		°F
Stage-1 Suction Pressure (low side)		
Stage-2 Liquid Pressure (high side)		
Stage-2 Liquid Temperature		°F
Stage-2 Suction Pressure (low side)		
BLOWER SYS	STEM	

BLOWER SYSTEM		
Blower Motor HP:		
Sheave Setting:	turns open	
System Static:	E.S.P. (in -Wg)	

ELECTRIC HEAT			
Heater Kit installed?	YES	NO	
Heater Kit Model #:			
Return Air Temp:(°F)			
Supply Air Temp:(°F)			
Temperature Rise:(°F)			

CERTIFIED ...

ge HP ard 340/360

Specifications & illustrations subject to change without notice or incurring obligations (01/15).